Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
1.
iScience ; 26(1): 105783, 2023 Jan 20.
Article in English | MEDLINE | ID: covidwho-2149918

ABSTRACT

Neutralizing antibodies (NAbs) hold great promise for clinical interventions against SARS-CoV-2 variants of concern (VOCs). Understanding NAb epitope-dependent antiviral mechanisms is crucial for developing vaccines and therapeutics against VOCs. Here we characterized two potent NAbs, EH3 and EH8, isolated from an unvaccinated pediatric patient with exceptional plasma neutralization activity. EH3 and EH8 cross-neutralize the early VOCs and mediate strong Fc-dependent effector activity in vitro. Structural analyses of EH3 and EH8 in complex with the receptor-binding domain (RBD) revealed the molecular determinants of the epitope-driven protection and VOC evasion. While EH3 represents the prevalent IGHV3-53 NAb whose epitope substantially overlaps with the ACE2 binding site, EH8 recognizes a narrow epitope exposed in both RBD-up and RBD-down conformations. When tested in vivo, a single-dose prophylactic administration of EH3 fully protected stringent K18-hACE2 mice from lethal challenge with Delta VOC. Our study demonstrates that protective NAbs responses converge in pediatric and adult SARS-CoV-2 patients.

2.
J Assoc Med Microbiol Infect Dis Can ; 7(3): 283-291, 2022 Sep.
Article in English | MEDLINE | ID: covidwho-2054880

ABSTRACT

BACKGROUND: COVID-19 is usually a time-limited disease. However, prolonged infections and reinfections can occur among immunocompromised patients. It can be difficult to distinguish a prolonged infection from a new one, especially when reinfection occurs early. METHODS: We report the case of a 57-year-old man infected with SARS-CoV-2 while undergoing chemotherapy for follicular lymphoma. He experienced prolonged symptomatic infection for 3 months despite a 5-day course of remdesivir and eventually deteriorated and died. RESULTS: Viral genome sequencing showed that his final deterioration was most likely due to reinfection. Serologic studies confirmed that the patient did not seroconvert. CONCLUSIONS: This case report highlights that reinfection can occur rapidly (62-67 d) among immunocompromised patients after a prolonged disease. We provide substantial proof of prolonged infection through repeated nucleic acid amplification tests and positive viral culture at day 56 of the disease course, and we put forward evidence of reinfection with viral genome sequencing.


HISTORIQUE: La COVID-19 est généralement une maladie limitée dans le temps. Toutefois, des infections et réinfections prolongées peuvent survenir chez des patients immunodéprimés. Il peut être difficile de distinguer une infection prolongée d'une nouvelle infection, particulièrement lorsque la réinfection se produit rapidement. MÉTHODOLOGIE: Les auteurs rendent compte du cas d'un homme de 57 ans infecté par le SRAS-CoV-2 alors qu'il était sous chimiothérapie pour soigner un lymphome folliculaire. Il a souffert d'une infection symptomatique prolongée de trois mois, malgré un traitement de cinq jours au remdésivir. Son état s'est finalement détérioré et il est décédé. RÉSULTATS: Le séquençage du génome viral a démontré que la détérioration finale de son état a probablement été causée par une réinfection. Les études sérologiques ont confirmé qu'il n'avait pas présenté de séroconversion. CONCLUSIONS: Le présent rapport de cas établit la possibilité d'une réinfection rapide (au bout de 62 à 67 jours) chez les patients immunodéprimés après une longue maladie. Les auteurs fournissent des preuves substantielles d'une infection prolongée par des tests répétés d'amplification des acides nucléiques et par des cultures virales positives au 56e jour de l'évolution de la maladie, et ils présentent des preuves de réinfection grâce au séquençage du génome viral.

3.
Antimicrob Agents Chemother ; 66(7): e0019822, 2022 07 19.
Article in English | MEDLINE | ID: covidwho-1901915

ABSTRACT

In vitro selection of remdesivir-resistant severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) revealed the emergence of a V166L substitution, located outside of the polymerase active site of the Nsp12 protein, after 9 passages of a single lineage. V166L remained the only Nsp12 substitution after 17 passages (10 µM remdesivir), conferring a 2.3-fold increase in 50% effective concentration (EC50). When V166L was introduced into a recombinant SARS-CoV-2 virus, a 1.5-fold increase in EC50 was observed, indicating a high in vitro barrier to remdesivir resistance.


Subject(s)
COVID-19 Drug Treatment , SARS-CoV-2 , Adenosine Monophosphate/analogs & derivatives , Adenosine Monophosphate/chemistry , Alanine/analogs & derivatives , Alanine/metabolism , Antiviral Agents/chemistry , Humans
4.
PLoS One ; 16(12): e0260714, 2021.
Article in English | MEDLINE | ID: covidwho-1546965

ABSTRACT

The first confirmed case of COVID-19 in Quebec, Canada, occurred at Verdun Hospital on February 25, 2020. A month later, a localized outbreak was observed at this hospital. We performed tiled amplicon whole genome nanopore sequencing on nasopharyngeal swabs from all SARS-CoV-2 positive samples from 31 March to 17 April 2020 in 2 local hospitals to assess viral diversity (unknown at the time in Quebec) and potential associations with clinical outcomes. We report 264 viral genomes from 242 individuals-both staff and patients-with associated clinical features and outcomes, as well as longitudinal samples and technical replicates. Viral lineage assessment identified multiple subclades in both hospitals, with a predominant subclade in the Verdun outbreak, indicative of hospital-acquired transmission. Dimensionality reduction identified two subclades with mutations of clinical interest, namely in the Spike protein, that evaded supervised lineage assignment methods-including Pangolin and NextClade supervised lineage assignment tools. We also report that certain symptoms (headache, myalgia and sore throat) are significantly associated with favorable patient outcomes. Our findings demonstrate the strength of unsupervised, data-driven analyses whilst suggesting that caution should be used when employing supervised genomic workflows, particularly during the early stages of a pandemic.


Subject(s)
COVID-19/virology , Cross Infection/virology , Disease Outbreaks , Genome, Viral/genetics , SARS-CoV-2/genetics , Adolescent , Adult , Aged , Aged, 80 and over , COVID-19/epidemiology , COVID-19/mortality , Child , Child, Preschool , Cross Infection/epidemiology , Disease Outbreaks/statistics & numerical data , Female , Haplotypes/genetics , Humans , Male , Middle Aged , Phylogeny , Quebec/epidemiology , SARS-CoV-2/pathogenicity , Sequence Analysis, RNA , Treatment Outcome , Young Adult
5.
Cell Syst ; 13(2): 143-157.e3, 2022 02 16.
Article in English | MEDLINE | ID: covidwho-1469826

ABSTRACT

The rapid, global dispersion of SARS-CoV-2 has led to the emergence of a diverse range of variants. Here, we describe how the mutational landscape of SARS-CoV-2 has shaped HLA-restricted T cell immunity at the population level during the first year of the pandemic. We analyzed a total of 330,246 high-quality SARS-CoV-2 genome assemblies, sampled across 143 countries and all major continents from December 2019 to December 2020 before mass vaccination or the rise of the Delta variant. We observed that proline residues are preferentially removed from the proteome of prevalent mutants, leading to a predicted global loss of SARS-CoV-2 T cell epitopes in individuals expressing HLA-B alleles of the B7 supertype family; this is largely driven by a dominant C-to-U mutation type at the RNA level. These results indicate that B7-supertype-associated epitopes, including the most immunodominant ones, were more likely to escape CD8+ T cell immunosurveillance during the first year of the pandemic.


Subject(s)
COVID-19 , Epitopes, T-Lymphocyte , SARS-CoV-2 , COVID-19/virology , Epitopes, T-Lymphocyte/genetics , Epitopes, T-Lymphocyte/immunology , Humans , Mutation , SARS-CoV-2/genetics
6.
Cell systems ; 2021.
Article in English | EuropePMC | ID: covidwho-1451581

ABSTRACT

The rapid, global dispersion of SARS-CoV-2 has led to the emergence of a diverse range of variants. Here, we describe how the mutational landscape of SARS-CoV-2 has shaped HLA-restricted T cell immunity at the population level during the first year of the pandemic. We analyzed a total of 330,246 high quality SARS-CoV-2 genome assemblies, sampled across 143 countries and all major continents from December 2019 to December 2020 before mass vaccination or the rise of the Delta variant. We observed that proline residues are preferentially removed from the proteome of prevalent mutants, leading to a predicted global loss of SARS-CoV-2 T cell epitopes in individuals expressing HLA-B alleles of the B7 supertype family;this is largely driven by a dominant C-to-U mutation type at the RNA level. These results indicate that B7 supertype associated epitopes, including the most immunodominant ones, were more likely to escape CD8+ T cell immunosurveillance during the first year of the pandemic. Graphical Abstract

SELECTION OF CITATIONS
SEARCH DETAIL